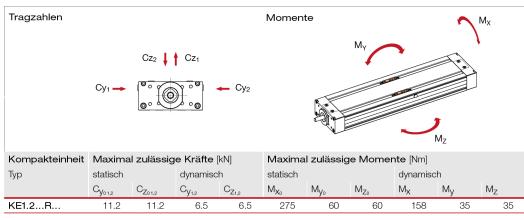
Kompakteinheit KE1.2...R... mit 1 Schlitten und Kugelgewindetrieb

21 032 h6	5 32	L _M /2+19 L _M L 7 = 2x Ø4 H7xt		32.5	4x M4x10 90
Nenngrösse	Abmessunge	∍n			
Bezeichnung	L	L _M	Spindellänge	Länge Abdeckband	Gewicht
	[mm]	[mm]	[mm]	[mm]	[kg]
KE1.2R	Hub + 135	L – 54	L + 12	2 x Hub + 220	1.77 kg + 0.410 kg/100 mm Hub


KE	KGT	Axiale Tragzahl		Positionier- genauigkeit	Wiederhol- genauigkeit	Beschleuni- gung	Axialspiel		Leerlauf- drehmoment
Grösse	dxp	Co	C_{dyn}			a _{max}	Тур	Axialspiel	
	[mm]	[N]	[N]	[µm/mm]	[mm]	[m/s ²]		[mm]	[Nm]
KE1R	12 x 5	3333	333 3099	52/300	< 0.03 1)	10.0	R	< 0.02	0.020
		3333			< 0.01 1)	10.0	V	_	0.090
	12 x 10	3333 3099	2,000	52/300	< 0.03 1)	10.0	R	< 0.02	0.045
			52/300	< 0.01 1)	10.0	V	_	0.180	

d x p = Spindeldurchmesser x Gewindesteigung

V = vorgespannt

KER	Verfahrge- schwindigkeit		Flächenträgheits- momente		Hub max.	Abdeck- band	Vorschub- und Reibkraft	Bewegte Masse
_	Führung	Antrieb		Ž			_	
Тур	V _{max}	V _{max}	I _Y	l _z			F_{v}	m _b
	[m/s]	[m/s]	[cm ⁴]	[cm ⁴]	[mm]		[N]	[kg]
KE1.2R	3.0 2)	2)	11.5	95.0	1315	ohne	8.00	0.370
		,				mit	12.00	

2) bei Spindelantrieb abhängig vom Drehzahlkennwert bzw. der Spindellänge und der entsprechenden kritischen Drehzahl

Die Festlegung der dynamischen Tragzahlen und Momente basiert auf 50000 m Hubweg. Müssen Vergleichswerte für 100000 m Hubweg berechnet werden, sind die Werte für M_{X_1} M_{Y_2} und C durch den Faktor 1.26 zu teilen.

Im Hinblick auf die Lebensdauer haben sich Belastungen kleiner 20% der dynamischen Tragzahlen als sinnvoll erwiesen.

¹⁾ ohne Berücksichtigung des Umkehrspiels

²⁾ optional auch mit 23 µm /300 mm erhältlich