LINE TECH=

SWISS MADE LINEAR TECHNOLOGY 🕂

LINETECH - SWISS MADE LINEAR TECHNOLOGY

Linear technology from engineering to system solution – 100% Swiss made

Providing movement – linear, high-precision, dynamic, flexible and unfailing – since 1993.

We are THE Swiss linear technology provider, firmly established in our home market and internationally linked with proven distribution partners. 2,000 satisfied customers and over 30,000 successfully completed projects are testimony to our expertise and reliability, from initial consultation to system commissioning and beyond.

"Innovative spirit and the drive to continuously develop are comerstones of the LINETECH corporate culture, encouraging our staff to cross new boundaries. Only as a high-performance and entrepreneurial-minded team that embraces the individual skills of each member can we be successful - for and with our customers and partners."

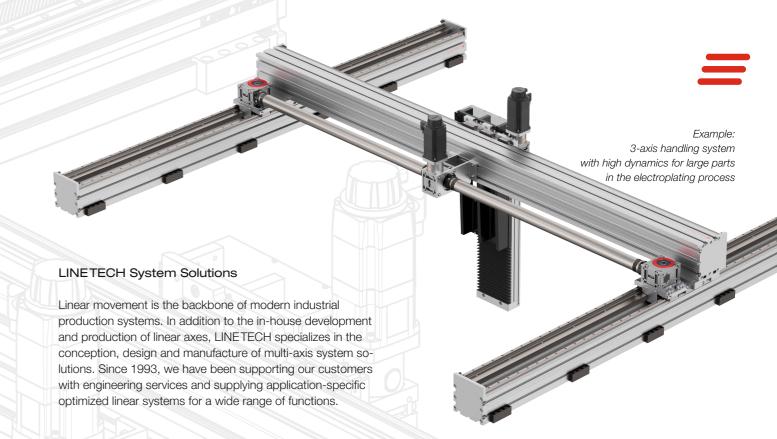
LINETECH Linear Units

The basis of the LINETECH product range is a comprehensive assortment of linear and positioning systems developed by our own engineers. LINETECH linear units – modular, ready-to-install linear axes – are 100% Swiss-made in our factory. They satisfy the highest standards of performance, precision and cost-effectiveness.

LINE TECH linear units are purpose-designed to meet a wide range of performance requirements.

The product range includes

- Linear Modules
- **■** Dynamic Modules
- **≡** Bridge Modules
- **=** Compact Units
- **=** Positioning Units.


For technical specifications see pages 4 to 8.

Innovation is in our blood. With constant development and quality awareness in all our processes and at all levels, we are a future-oriented and reliable partner for our customers, suppliers and employees – for the success and benefit of all.

These product lines can be combined and are available in various sizes and versions to meet any application requirements.

Adaptations to meet specific customer needs can be realized flexibly and at short notice thanks to our JIT production facility – from minor additional processing to complete application-specific solutions.

Our customers always benefit from short delivery times thanks to our large warehouse with correspondingly high availability.

"Our customers get not just a product but a solution.

According to their requirements, we work with passion to develop a custom system – exactly for their needs."

Of course, we also offer to support our customers with system commissioning, and our After Sales Service team is ready to respond rapidly and reliably in the event of any problems or questions throughout the entire service life of our products.

Linear Technology Components (Trade Products)

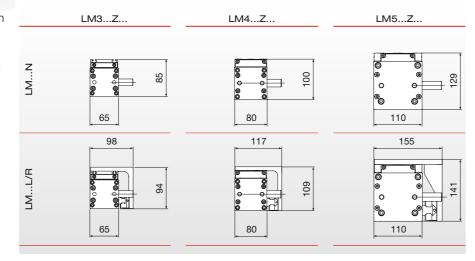
Thanks to our collaboration with renowned manufacturers such as cpc and NSK, to name the most important ones, we are also a full-service provider of linear technology components for our customers – from standard linear ball bearings to high-performance linear motors.

"Commitment and reliability are our top priority, true to our motto:

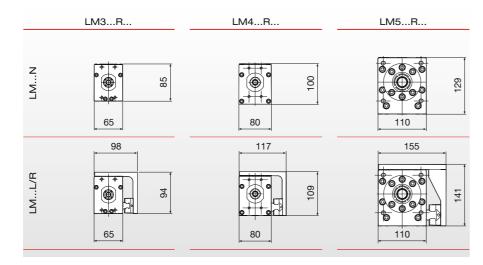
We keep our promises, respond flexibly to our customers' needs and exceed expectations."

LINETECH, your reliable linear technology partner - from engineering to system solution.

LINETECH LINEAR MODULES LM...Z... / LM...R...

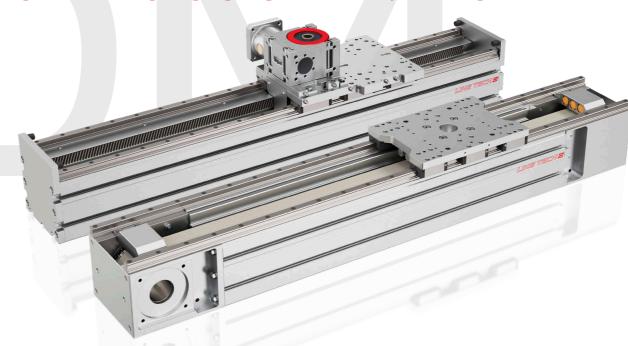

LINETECH Linear Modules

are ideal for applications with greater travel distances, high speeds and medium loads. These ready-to-install, modular linear axes are available with either an integrated (LM...N...) or a second outlying linear rail guide (LM...L/R...), both fitted with 2 runner blocks each. High-performance toothed belts (LM...Z...) or ball screws (LM...R...) are available as drives. Three sizes (LM3, LM4, and LM5) are currently available.


Design and advantages

- = Ready-to-install linear modules
- Compact aluminium profile as base carrier
- Aluminium carriage
- Optimal movement characteristics, high load ratings and high rigidity due to one or optionally two zero-play linear rail guides
- Drive via either
- Toothed belt (LM...Z...)
- Ball screw (LM...R...)
- Simple gearbox and motor mounting
- Design can be adapted to the application

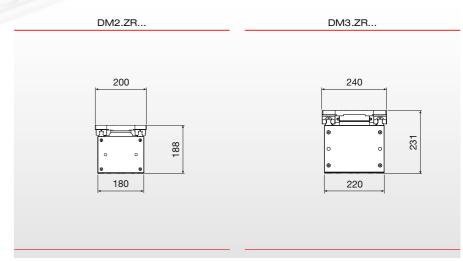
Profiles of Linear Modules LM...Z... with toothed belt drive



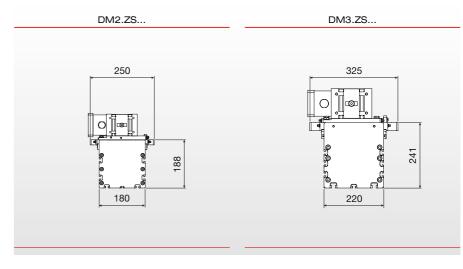
Profiles of Linear Modules LM...R... with ball screw drive

For technical data see pages 10-13

LINETECH DYNAMIC MODULES DM...ZR... / DM...ZS...


LINETECH Dynamic Modules

are designed for applications with high loads and very short cycle times. Thanks to the special design of the extruded aluminium profiles, the base carriers have very high torsional rigidity and are suitable as long-stroke, self-supporting axes. With two integrated linear rail guides with a total of 4 to 6 runner blocks as well as powerful drives via high-performance rack and pinions (DM...ZS...) or toothed belts (DM...ZR...), LINETECH dynamic modules meet the highest demands in terms of load capacity, dynamics and service life. Two sizes (DM2 and DM3) are currently available.


Design and advantages

- Ready-to-install dynamic modules
- Torsion-resistant aluminium profile as base carrier
- Aluminium carriage
- Optimal movement characteristics, high load ratings and high rigidity due to two integrated, zero-play linear rail guides with a total of either 4 or 6 runner blocks
- Drive via either
- Toothed belt (DM...ZR...)
- Rack and pinion (DM...ZS...)
- Simple gearbox and motor mounting
- Design can be adapted to the application

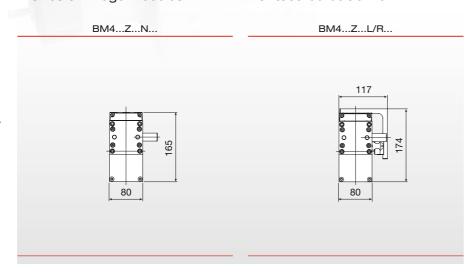
Profiles of Dynamic Modules DM...ZR... with toothed belt drive

Profiles of Dynamic Modules DM...ZS... with rack and pinion drive

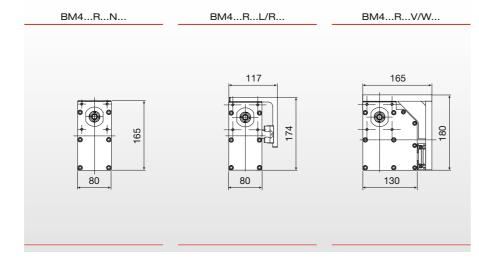
For technical data see pages 10-13

www.linetech.ch

LINETECH BRIDGE MODULES BM...Z... / BM...R...


LINETECH Bridge Modules

are especially suitable as self-supporting long-stroke portal axes or axes with higher intrinsic inertia. These ready-to-install, modular linear axes are available in one size (BM4) and provided with an integrated linear rail guide and type-specifically with a second lateral linear rail guide. High-performance toothed belts or ball screws are available as drives.


Design and advantages

- Ready-to-install bridge modules
- Ultra-strong aluminium profile as base carrier
- Aluminium carriage
- Optimal movement characteristics combined with high load ratings and high rigidity due to either one or two linear rail guides
- **=** Drive via either
- Toothed belt (BM...Z...)
- Ball screw (BM...R...)
- Simple gearbox and motor mounting
- Suitable for multi-axis systems
- Design can be adapted to the application

Profiles of Bridge Modules BM...Z... with toothed belt drive

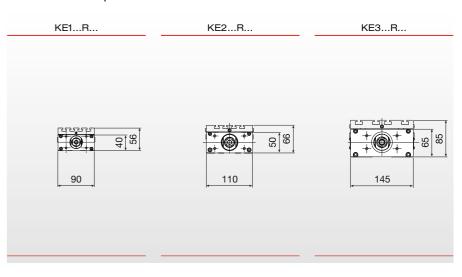
Profiles of Bridge Modules BM...R... with ball screw drive

For technical data see pages 10-13

LINETECH COMPACT UNITS KE...Z... / KE...R...

LINETECH Compact Units

are suitable for applications with medium-to-high load and precision requirements. These linear systems have a modular design and are each equipped with two linear rail guides and a total of either 2 or 4 runner blocks. High-performance toothed belts or ball screws of various types are used as drives. The version with toothed belt drive is currently available in one size (KE2...Z...), the version with ball screw in three sizes (KE1...R..., KE2...R... and KE3...R...).


Design and advantages

- Ready-to-install compact units
- ≡ Extremely compact design
- Aluminium profile as base carrier
- Aluminium carriage
- Optimal movement characteristics combined with high load ratings and high rigidity due to either 2 (KE...2...) or 4 (KE...4...) integrated runner blocks
- **■** With/without connecting plate (KE...V...)
- Drive via either
- Toothed belt (KE...Z...)
- Ball screw (KE...R...)
- Simple gearbox and motor mounting
- Suitable for cross-table mounting and multi-axis systems
- Design can be adapted to the application

Profile of Compact Unit KE...Z... with toothed belt drive

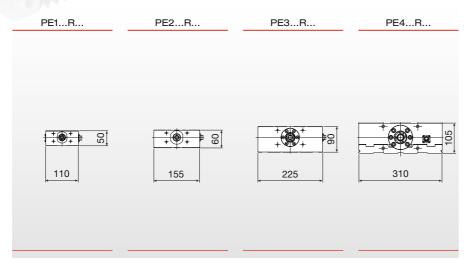
KE2...Z...

Profiles of Compact Units KE...R... with ball screw drive

For technical data see pages 10-13

LINETECH POSITIONING UNITS PE...R...

LINETECH Positioning Units


are developed for the highest performance and precision requirements. These linear systems, available in four sizes (PE1, PE2, PE3 and PE4), have a modular design and are each equipped with two linear rail guides with a total of 4 runner blocks. Ball screws of various types are used as drives.

LINETECH positioning units are thus particularly suitable for applications with the highest demands on precision, rigidity and load rating.

Design and advantages

- Ready-to-install positioning units
- Compact design
- **=** Solid aluminium profile as base carrier
- Solid aluminium carriage
- **=** High-precision movement combined with highest load ratings and extreme
- Ball screw drive
- **=** Bellows cover
- **≡** Simple gearbox and motor mounting
- **=** Suitable for cross-table mounting and multi-axis systems
- Design can be adapted to the application

Profiles of Positioning Units PE...R... with ball screw drive

For technical data see pages 10–13

LINEAR TECHNOLOGY COMPONENTS

Trade Products

■ Ball screw drives (NSK)

Compact, precise and durable - even under the highest loads.

= Standard and miniature linear rail guides (CPC/NSK)

The state-of-the-art guide element: A wide variety of versions for any application and the highest loads - robust and precise with long service life.

Cutting and machining service for rail guides.

■ Roller guides (CPC/NSK)

For the highest requirements for load ratings and rigidity. Durable, quiet and dirt-resistant.

Cutting and machining service for rail guides.

= Linear motors (CPC)

The powerful drive for highest speeds - quiet, precise, compact and efficient. Ideal for cleanroom applications.

■ Megatorque Motors™ (NSK) Rotary unit and motor in one

- highest resolution and dynamics with compact dimensions.

■ Monocarrier (NSK)

Compact standard linear axes for building simple linear systems.

■ Bearing units for screw drives

Upright and flanged bearing units for simple and precise mounting of ball screw drives.

■ Ball bushings, shafts, and accessories

The proven standard and special guide elements - precise and highly efficient.

Thanks to our large warehouse with correspondingly high availability, our customers always benefit from quick delivery times.

CPC contracting partner for Switzerland

LINE TECH is the exclusive distributor of the entire CPC product range in Switzerland.

LINETECH LINEAR UNITS - STANDARD RANGE

								TOOTHED BELT DRIVE														BALL	SCREW DRIV	/E								RACK AND PINION DRIVE		
M_y C_{Z_2}	M _X	LINEAR I	MODULES	5				DYNAMIC DMZR	MODULES	BRIDGE MODULES BMZ		COMPACT UNIT KEZ		LINEAR MODULES LMR						BRIDGE I	BRIDGE MODULES BMR		COMPACT UNITS KER		22.50			POSITION PER	IING UNITS			DYNAMIC MC	DDULES	
Cy ₂	M _Z							0).		3		O TOTAL STREET	LNB 1822 E																					
pe / Size		LM3N	LM3L/R	LM4N	LM4L/R	R LM5N	LM5L/R	DM2	DM3	BM4N	BM4L/R	KE2.2	KE2.4	LM3N L	_M3L/R	LM4N	LM4L/R	LM5N	LM5L/R	BM4N	BM4L/R	BM4V/W	KE1.2	KE1.4	KE2.2 KE2	.4 KE3.:	2 KE3.4	PE1	PE2	PE3	PE4	DM2	DM3	
ofile				10 m	100 mm m m m m m m m m m m m m m m m m m								⊒÷		** **********************************	<u></u>				.	•	(®)*_						(:⊚:)₀	:®:					
Profile cross-section	[mm]	65 x 85	98 x 94	80 x 100	117 x 109	110 x 129	155 x 141	180 x 188	220 x 231	80 x 165	117 x 174	110	x 50	65 x 85	98 x 94	80 x 100	117 x 109	110 x 129	155 x 141	80 x 165	117 x 174	165 x 180	90 x 40		110 x 50		145 x 65	110 x 50	155 x 60	225 x 90	310 x 105	180 x 188	220 x 241	
Max. travel / stroke 3)	[mm]	m] 7650 7580 7		530	6360 6250		6180		5700		2000		3000		3000			3000		1315 1250		1375 1290		1750	1 500	2000	3000	3000	5550	5 450				
Stroke per revolution	[mm]	155 205 296		296	320	392	205		1	120		5/10/16		5 / 20		5 / 10 / 32		20		5 / 10		5/10/16		5/10/20	5/10/16	5/20	5/10/25	5 / 10 / 32	133.332	160.001				
Protective covering	[-]	with/without steel strip				withou	ut cover	with/without steel strip		without steel strip		with/without steel str			steel strip			with	with/without steel strip		with/without synthetic ribbons			ibbons		with/without expansion bellows			WS	without cover				
Repeating accuracy	[mm]	n] < 0.20 ⁴⁾				± 0	± 0.05 ⁴⁾ < 0.20 ⁴⁾			< 0.20 4)		< 0.03			< 0.03			< 0.03				< 0.01				± 0.02 ⁴⁾								
Temperature range	[°C]	+5+80				+5+80 +5+80			.+80	+5+80		+5+80			+5+80				+5+80					+5+80				+5+80						
Load rating C _{y 0 1,2}	[kN]	35.0	70.0	59.9	119.9	85.0	170.0	162.0	311.5	59.9	119.9	35	70	35.0	70.0	59.9	119.9	85.0	170.0	59.9	119.9	119.9	11.2	22.5	35.0 70.0	59.9	119.9	13.8	42.5	59.2	230.5	192.6	311.5	
Load rating C _{Z 0 1}	[kN]	35.0	70.0	59.9	119.9	85.0	170.0	162.0	311.5	59.9	119.9	35	70	35.0	70.0	59.9	119.9	85.0	170.0	59.9	119.9	119.9	11.2	22.5	35.0 70.0	59.9	119.9	13.8	50.7	70.5	274.5	192.6	311.5	
Load rating C _{Z 0 2}	[kN]	35.0	70.0	59.9	119.9	85.0	170.0	162.0	311.5	59.9	119.9	35	70	35.0	70.0	59.9	119.9	85.0	170.0	59.9	119.9	119.9	11.2	22.5	35.0 70.0	59.9	119.9	13.8	67.6	94.0	366	192.6	311.5	
Axial load rating F _{X 0}	[N]		560	2	2200		280	4500	7200			2100		4551		5705		11538		5705			3333				5705			11538				
Torque M _{X 0}	[Nm]	286	1 457	646	3 0 3 0	1 080	3356	12310	29600	646	3 030	1064	2120	286	1 456	646	3030	1080	5588	646	3030	4926	275	550	1064 212	0 2427	7 4854	422	2457	4757	30 195	14630	29600	
Torque M _{y 0}		1185	2610	2484	4772	6115	12513	12080	35950	1573	3860	204	1926	1353	2778	1573	3860	2316	8715	1 107	3395	3523	60	330	204 140	266	2100	380	2230	4617	26625	15110	35950	
Torque M _{Z 0}	[Nm]		2610	2484	4772	6115	12513	12080	35950	1573	3860	204	1820	1353	2778	1573	3860	2316	8715	1107	3395	3523	60	330	204 139	2 266	2100	380	1872	3877	22365	15110	35 950	
Load rating C _{y 1,2}		18.0	36.0 36.0	34.2	68.4 68.4	49.6 49.6	99.2	116.3	208.8	34.2 34.2	68.4 68.4	18	30	18.0	36.0	34.2	68.4	49.6 49.6	99.2	34.2	68.4	68.4	6.5	13.0	18.0 36.0 18.0 36.0			9.2	29.3	41.4	161.9 184.0	131.3	208.8	
Load rating $C_{Z_{1,2}}$ Axial load rating F_X	[kN]	16.0	30.0		on application		99.2		n application		application		application	4327	,	34.2 49 ⁻		49.0		34.2	4912	06.4	3099	13.0	4327	34.2	4912	4327	4912	6140	8947		speed and load	
Torque M _X	[Nm]	160	808	400	1 868	684	2136	8840	19840	400	1 868	590	1180	160	808	400	1.868	684	3552	400	1868	3,060	158	316	590 118	0 1507		281	1618	3157	20240	9980	19840	
Torque My		923	1998	2130	4115	5170	10541	8790	24470	1 446	2432	226	1542	1030	2016	1 446	3432	2290	7659	1069	3056	3150		210	226 118			253	1 469	3065	17 547	10620	24470	
Torque M _Z	[Nm]		1998	2130	4115	5170	10541	8790	24470	1 446	2432	226	1542	880	2016	1 446	3 432	2290	7 659	1 069	3056	3150	35	210	226 118			253	1 290	2691	15708	10620	24470	
Max. speed ²⁾	[m/s]					5.0 5.0				5.0			1.6 5)						1.6 5)		1.6 ⁵⁾		1.6 ⁵⁾			1.6 5)			5.0					
Max. acceleration 2)	[m/s ²]						50.0 50.0				50.0			10.0					10.0			10.0				10.0				50.0				

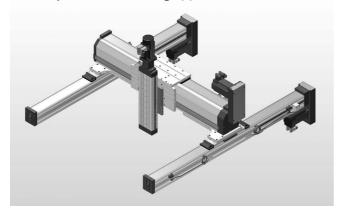
The indicated values are standard values. For special solutions please contact our technical sales team.

1) Regarding durability we recommend loads of max. 20% of the dynamic load ratings

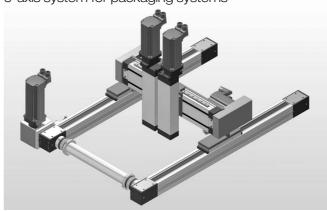
2) Higher requirements on request

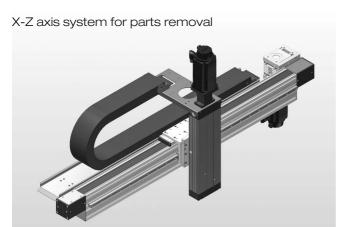
3) Longer strokes possible with butt-jointed profiles

4) per 1 000 mm stroke


⁵⁾ Depends on rotational speed characteristics and the critical rotational speed

10 LINE TECH - SWISS MADE LINEAR TECHNOLOGY (1) www.linetech.ch www.linetech.ch




Further application examples

3-axis system for metering application

LINE TECH AG Europastrasse 19 8152 Glattbrugg Switzerland

Phone +41 43 211 68 68 sales@linetech.ch

© LINE TECH AG

The contents of this publication are protected by copyright held by the publisher and may not be reproduced in whole or in part unless permission is granted. Every care has been taken to ensure the accuracy of the information contained herein but no liability can be accepted for any loss or damage, whether direct, indirect or consequential, resulting from or in connection with the use of the information contained herein. This catalogue supersedes previous catalogues in which information differs from that contained herein. Information is subject to change as required by technological advancements.

Edition: 04-2025 EN