

FOR THE DESIGN OF LINEAR UNITS AND DRIVES

CALCULATION BASES

Design of LINE TECH linear units and their drives

Concept

The determination of service life must be calculated based on the respective documents of the linear guide system and the ball screw drives. Also for the toothed belt drive and the rack and pinion drive we shall refer to the specific literature.

Since the service life is normally dependent on the linear guide system, the following formulae can be applied for approximate determination:

Dynamic load

Nominal service life L_{10} is derived from dynamic load rating $C_{\rm dyn}$ [N] and load $F_{\rm r}$ [N]:

$$L_{10} = \left(\frac{C_{dyn}}{F_r}\right)^3 \quad [10^5 \, \text{m rolling distance}]$$

Static load

For purely static loading or impacts, static parameter f_S is calculated to verify that a bridge module with a sufficiently high load-bearing capacity is selected. Factoring in static load rating C_0 [N] and load F_r [N] gives:

$$f_S = \frac{C_0}{F_r}$$

If $f_S \ge 1$, the safety margin is large enough. If $f_S \le 1$, please check with LINE TECH.

Remark

The above formulas are only valid if all linear bearings are loaded evenly, i.e. if the load $F_{\rm r}$ acts on the centre of the carriage.

The drive (ball screw / toothed belt drive / rack and pinion drive) must be checked if any linear units are installed vertically. LINE TECH disposes of different test programs. If you provide us all the necessary information, we'll be pleased to assist you.

Definition of the drive motor

The drive motor forms the link between the control signal and the movement to be applied to a given load.

Size and type of the drive motor primarily depend on the load, the required displacement speed and the acceleration factor.

All calculations should be based on the most unfavourable operating conditions.

The necessary formulas are listed opposite to help you determine the correct motor characteristics for your application.

FORMULA COLLECTION

Design of LINE TECH linear units and their drives

		$i = \frac{d_1}{d_2}$ M_M N_M	$i = \frac{d_1}{d_2} $ $M_{M_1}, n_{M_2} $ M_{M_3}	M _M , n _M j J _g m _T F _L d ₃
Motor speed [[min ⁻¹]	$n_{M} = \frac{v \cdot 6 \cdot 10^{4}}{p \cdot i}$	$n_{M} = \frac{v \cdot 6 \cdot 10^{4}}{\pi \cdot d_{3} \cdot i}$	$n_{M} = \frac{v \cdot 6 \cdot 10^{4}}{\pi \cdot d_{3} \cdot i}$
Critical speed [mi	n ⁻¹]	$n_{K} = 120 \cdot 10^{6} \cdot \frac{d}{l^{2}}$	_	_
Load torque	[Nm]	$M_{L} = p \cdot i \frac{F_{L}}{2000 \cdot \pi}$	$M_L = d_3 \cdot i \frac{F_L}{2000}$	$M_L = d_3 \cdot i \frac{F_L}{2000}$
Translatory mass moment of inertia	[kgm²]	$J_{T} = m_{T} \left(\frac{p}{2 \cdot \pi} \right)^{2} \cdot 10^{-6}$	$J_{T} = m_{T} \left(\frac{d_{3}}{2}\right)^{2} \cdot 10^{-6}$	$J_{T} = m_{T} \left(\frac{d_{3}}{2}\right)^{2} \cdot 10^{-6}$
Rotatory mass moment of inertia (for steel)	[kgm²]	$J_{R} = 7.7 \cdot d^4 \cdot I \cdot 10^{-13}$	$J_{R} = 7.7 \cdot d_{3}^{4} \cdot I_{R} \cdot 10^{-13}$	$J_{R} = 7.7 \cdot d_{3}^{4} \cdot I_{R} \cdot 10^{-13}$
Sum of reduced mass moments of inertia	[kgm²]	$J = J_M + J_1 + i^2 (J_R + J_T + J_2)$	$J = J_M + J_1 + i^2 (J_R + J_T + J_2)$	$J = J_M + J_g + i^2 (J_R + J_T)$
Acceleration or Braking moment $M_B = f(n_M)$	[Nm]	$M_{B} = \frac{n_{M} \cdot J}{9.55 \cdot t_{B}}$	$M_{B} = \frac{n_{M} \cdot J}{9.55 \cdot t_{B}}$	$M_{B} = \frac{n_{M} \cdot J}{9.55 \cdot t_{B}}$
Acceleration or Braking moment $M_B = f(s_B)$	[Nm]	$M_{B} = \frac{4 \cdot \pi \cdot s_{B} \cdot J}{p \cdot i \cdot t_{B}^{2}}$	$M_{B} = \frac{4 \cdot s_{B} \cdot J}{d_{3} \cdot i \cdot t_{B}^{2}}$	$M_B = \frac{4 \cdot s_B \cdot J}{d_3 \cdot i \cdot t_B^2}$
Acceleration or Braking time $t_B = f(n_M)$	[s]	$t_{B} = \frac{n_{M} \cdot J}{9.55 \cdot M_{B}}$	$t_{B} = \frac{n_{M} \cdot J}{9.55 \cdot M_{B}}$	$t_{B} = \frac{n_{M} \cdot J}{9.55 \cdot M_{B}}$
Acceleration or Braking time $t_B = f(s_B)$	[s]	$t_{B} = \sqrt{\frac{4 \cdot \pi \cdot s_{B} \cdot J}{p \cdot i \cdot M_{B}}}$	$t_{B} = \sqrt{\frac{4 \cdot s_{B} \cdot J}{d_{3} \cdot i \cdot M_{B}}}$	$t_{B} = \sqrt{\frac{4 \cdot s_{B} \cdot J}{d_{3} \cdot i \cdot M_{B}}}$
Speed reached after acceleration	[min ⁻¹]	$n_{M} = \frac{120 \cdot s_{B}}{p \cdot i \cdot t_{B}}$	$n_{M} = \frac{120 \cdot s_{B}}{d_{3} \cdot \pi \cdot i \cdot t_{B}}$	$n_{M} = \frac{120 \cdot s_{B}}{d_{3} \cdot \pi \cdot i \cdot t_{B}}$
Distance travelled during acceleration	[mm]	$s_B = \frac{n_M \cdot t_B \cdot p \cdot i}{120}$	$s_{B} = \frac{n_{M} \cdot t_{B} \cdot d_{3} \cdot \pi \cdot i}{120}$	$s_{B} = \frac{n_{M} \cdot t_{B} \cdot d_{3} \cdot \pi \cdot i}{120}$
Sum of torques to be overcome by the motor	[Nm]	$M_{M} = \frac{1}{\eta} (M_{L} + M_{B})$	$M_{M} = \frac{1}{\eta} (M_{L} + M_{B})$	$M_{M} = \frac{1}{\eta} (M_{L} + M_{B})$
Power output [W]		$P_{A} = \frac{M_{M} \cdot n_{M}}{9.55}$	$P_{A} = \frac{M_{M} \cdot n_{M}}{9.55}$	$P_{A} = \frac{M_{M} \cdot n_{M}}{9.55}$
Effective value of motor output torque	[Nm]	$M_{eff} = \sqrt{\frac{\sum t_{B} (M_{M}/M_{d})^2 + \sum t_{L} (M_{L}/M_{d})^2}{\sum t_{B} + \sum t_{L} + t_{0}}} \cdot M_{d}$	$M_{eff} = \sqrt{\frac{\sum t_{B} (M_{M}/M_{d})^2 + \sum t_{L} (M_{L}/M_{d})^2}{\sum t_{B} + \sum t_{L} + t_{0}}} \cdot M_{d}$	$M_{eff} = \sqrt{\frac{\sum t_{B} \left(M_{M}/M_{d}\right)^{2} + \sum t_{L} \left(M_{L}/M_{d}\right)^{2}}{\sum t_{B} + \sum t_{L} + t_{0}} \cdot M_{d}}$

Key to the formulas shown opposite:

- [mm] = ball screw diameter
- [mm] = diametre driving pinion
- [mm] = diameter driven pinion
- [mm] = pulley diameter
- = feed force
- = gear reduction (at gear reduction 1:2 => i = 0.5)
- [kgm²] = mass moment of inertia
- [kgm²] = mass moment of inertia of the driving wheel
- [kgm²] = mass moment of inertia of the driven wheel
- [kgm²] = mass moment of inertia of the gearbox (relative to input)
- [kgm²] = mass moment of inertia of the drive motor
- [kgm²] = rotatory mass moment of inertia
- [kgm²] = translatory mass moment of inertia
- [mm] = ball screw length
- [mm] = pinion / pulley width
- [Nm] = acceleration or braking torque
- M_d [Nm] = motor continuous torque (see specs. of your prefered motor)
- [Nm] = effective motor output torque
- [Nm] = load torque
- [Nm] = motor torque (see motor specs.)
- M_{max} [Nm] = peak motor torque
- m_T [kg] = external load (linear moved mass)
- [min⁻¹] = critical speed for ball screw drive
- [min⁻¹] = motor speed
- = screw pitch
- = power output
- [mm] = acceleration/braking path
- = acceleration/braking time
- = running time under load torque
- = stop time without load
- [m/s] = feed rate
- = mechanical efficiency on motor shaft

© LINE TECH AG

The contents of this publication are protected by copyright held by the publisher and may not be reproduced in whole or in part unless permission is granted. Every care has been taken to ensure the accuracy of the information contained herein but no liability can be accepted for any loss or damage, whether direct, indirect or consequential, resulting from or in connection with the use of the information contained herein. This catalogue supersedes previous catalogues in which information differs from that contained herein. Information is subject to change as required by technological advancements.

Edition: 08-2025 E

LINE TECH AG Europastrasse 19 8152 Glattbrugg Switzerland

Phone +41 43 211 68 68 sales@linetech.ch

